
职称: | 副教授,博导 |
---|---|
所属部门: | 基础数学系 |
办公室: | 闵行数学楼225室 |
办公电话: | 54342646-225 |
邮箱: | lluo@math.ecnu.edu.cn |
个人主页: | /~lluo |
教育经历:
2000.09--2004.07 中国科学技术大学 数学系 本科
2004.09--2009.07 中国科学院 数学与系统科学研究院 博士
工作经历:
2009.08--2012.12 体育滚球平台注册 数学系 讲师
2013.01--至今 体育滚球平台注册 数学系 副教授
学术访问:
2009.01--2009.07 澳大利亚 悉尼大学 数学与统计学院
2013.09--2014.04 美国 弗吉尼亚大学 数学系
2014.12 台北 中央研究院 数学研究所
Preprints
[19] Weideng Cui, Li Luo, Weiqiang Wang, Cells in affine q-Schur algebras, arXiv: 2004.00193. 31 pages.
[18] Chih-Whi Chen, Shun-Jen Cheng, Li
Luo, Blocks and characters of D(2|1; ζ)-modules of
non-integral weights, arXiv: 2002.02662. 27 pages.
Research Monographs
[17] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo,
Weiqiang Wang, Affine flag varieties and quantum symmetric pairs.
Mem. Amer. Math. Soc. 265 (2020), no. 1285, v+123
pp.
[16] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo,
Weiqiang Wang, Affine Hecke algebras and quantum symmetric pairs. Mem. Amer. Math. Soc., to appear. arXiv: 1609.06199. 87 pages.
Paper accepted
[15] Li Luo, Weiqiang Wang, The q-Schur algebras and q-Schur dualities of finite type. J. Inst. Math.
Jussieu, to appear. arXiv: 1710.10375. 32 pages.
[14] Chun-Ju Lai, Li Luo, Schur algebras and quantum symmetric pairs with unequal parameters. Int. Math. Res. Not., to appear. arXiv: 1808.00938. 34 pages.
Paper Published
[13] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Hideya Watanabe, Quantum Schur duality of affine
type C with three parameters. Math. Res. Lett. 27 (2020), no. 1, 79--114.
[12] Jie Liu, Li Luo, Weiqiang Wang, Odd
singular vector formula for general linear superalgebras. Bull. Inst. Math. Acad. Sin.
(N.S.) 14 (2019), no. 4, 389--402.
[11] Li Luo, Husileng Xiao, Vust's theorem and higher level Schur-Weyl duality for types B, C and D. J. Pure Appl. Alg. 222 (2018), no. 2, 340--358.
[10] Chun-Ju Lai, Li Luo, An elementary construction of monomial bases of modified quantum affine gl_n. J. London Math. Soc. 96 (2017), no. 1, 15--27.
[9] Bintao Cao, Li Luo, Ke Ou, Extensions of inhomogeneous polynomial representations for sl(m+1|n). J. Math. Phy. 55 (2014), no.8, 081705, 13pp.
[8] Bintao Cao, Li Luo, Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras. J. Lie Theory 23 (2013), no. 4, 1115--1128.
[7] Bintao Cao, Li Luo, Trivial module for ortho-symplectic Lie superalgebras and Littlewood's formula. Sci. China Math. 56 (2013), no. 11, 2251--2260.
[6] Lili Liu, Li Luo, On ad-nilpotent b-ideals for orthogonal Lie algebras. Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 241--262.
[5] Li Luo, Abelian ideals with given dimension in Borel subalgebras. Algebra Colloq. 19 (2012), no. 4, 755--770.
[4] Li Luo, Character formulae for ortho-symplectic Lie superalgebras osp(n|2). J. Algebra 353 (2012), 31--61.
[3] Li Luo, Oriented tree diagram Lie algebras and their abelian ideals. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2041--2058.
[2] Li Luo, Cohomology of oriented tree diagram Lie algebras. Comm. Algebra 37 (2009), no. 3, 965--984.
[1] Li Luo, Abelian ideals and cohomology of symplectic type. Proc. Amer. Math. Soc. 137 (2009), no. 2, 479--485.